A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The radius of the outer ripple is increasing at a constant rate of 6 inches per second. When the radius is 4 feet, at what rate (in ft2/sec) is the total area A of the disturbed water changing

Respuesta :

Answer:

The rate of area of the disturbed water changing is 12.56 [tex]\frac{ft^{2} }{sec}[/tex]

Explanation:

Given:

Radius increasing rate [tex]\frac{dr}{dt} = 6[/tex] [tex]\frac{in}{sec}[/tex]

Radius [tex]r = 4[/tex] ft

Now we convert radius increasing rate into feet per second,

   [tex]\frac{dr}{dt} = \frac{6}{12} \frac{ft}{sec}[/tex]

Here we have to find total area rate [tex]\frac{dA}{dt}[/tex]

    [tex]A = \pi r^{2}[/tex]

   [tex]\frac{dA}{dt} = \frac{d(\pi r^{2} )}{dt}[/tex]

   [tex]\frac{dA}{dt} =\pi \frac{d( r^{2} )}{dt}[/tex]

   [tex]\frac{dA}{dt} = 2\pi r\frac{dr }{dt}[/tex]

   [tex]\frac{dA}{dt} = 2\pi \times 4 \times \frac{6}{12}[/tex]

   [tex]\frac{dA}{dt} = 12.56[/tex] [tex]\frac{ft^{2} }{sec}[/tex]

Therefore, the rate of area of the disturbed water changing is 12.56 [tex]\frac{ft^{2} }{sec}[/tex]