A tank in the shape of an inverted right circular cone has height 4 meters and radius 2 meters. It is filled with 3 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is δ=1020 kg/m3.δ=1020 kg/m3. Your answer must include the correct units.

Respuesta :

Answer:

The required work to empty the the tank is 247401 J.

Explanation:

Given that,

A tank is in the shape of right circular cone.

The radius of the tank= 2 m

The height of the tank = 4 m

The relation between the radius and the height is

[tex]\frac{r}{h}=\frac{2}{4}[/tex]

[tex]\Rightarrow r= \frac12 h[/tex]

Let h be the height of hot of chocolate any time t.

The volume of a cone is [tex]= \frac 13 \pi r^2 h[/tex]

                                        [tex]=\frac13 \pi (\frac h2)^2h[/tex]

                                         [tex]=\frac16 \pi h^3[/tex]

The volume of the chocolate is [tex]=\frac16 \pi h^3[/tex]

The mass of the  chocolate is(M)= Density × Volume

                                                     [tex]=1020(\frac16 \pi h^3)[/tex] Kg

                                                     [tex]=170\pi h^3[/tex] kg

[tex]\frac{dM}{dh}= 170\pi (3h^2)[/tex]

[tex]\Rightarrow dM=510\pi h^2\ dh[/tex]

Work done = Force × displacement

                  = Mass × acceleration×displacement

Here acceleration= acceleration due to gravity = 9.8 m/s²

The displacement when the hot chocolate level is h is = (4-h)                  

Work done (dw) [tex]=(510\pi h^2 )(9.8)(4-h)dh[/tex] [tex]=4998\pi h^2 (4-h)dh[/tex]

Work done = W [tex]=\int_0^34998\pi h^2 (4-h)dh[/tex]

                         [tex]=\int_0^34998\pi [4h^2-h^3]dh[/tex]

                        [tex]=4998\pi [4\frac{h^3}{3}-\frac{h^4}{4}]_0^3[/tex]

                        [tex]=4998\pi [(4\frac{3^3}{3}-\frac{3^4}{4})-(4\frac{0^3}{3}-\frac{0^4}{4})][/tex]

                        =247401 J

The required work to empty the the tank is 247401 J.