Answer:
[tex]2,882.5\ cm^3[/tex]
Step-by-step explanation:
we know that
The approximate volume of the finished cylinder, is equal to subtract the volume of the hole from the volume of the original cylinder
so
[tex]V=\pi r_1^{2}h-\pi r_2^{2}h[/tex]
[tex]V=\pi h[r_1^{2}-r_2^{2}][/tex]
where
r_1 is the radius of the original cylinder
r_2 is the radius of the hole
we have
[tex]r_1=20/2=10\ cm[/tex] ---> the radius is half the diameter
[tex]r_2=14/2=7\ cm[/tex] ---> the radius is half the diameter
[tex]h=18\ cm[/tex]
[tex]\pi=3.14[/tex]
substitute the given values in the formula
[tex]V=(3.14)(18)[10^{2}-7^{2}][/tex]
[tex]V=56.52[51]\\V=2,882.5\ cm^3[/tex]