Respuesta :

Answer:

[tex]A=64\sqrt{3}\ cm^2[/tex]

Step-by-step explanation:

we know that

An equilateral triangle has three equal sides and three equal interior angles (each interior angle measure 60 degrees)

so

The perimeter is equal to

[tex]P=3b[/tex]

where

b is the length side of the equilateral triangle

we have

[tex]P=48\ cm[/tex]

substitute

[tex]48=3b[/tex]

solve for b

[tex]b=48/3\\b=16\ cm[/tex]

Find the area

The formula of area applying the law of sines is equal to

[tex]A=\frac{1}{2}b^2sin(60^o)[/tex]

substitute the value of b

[tex]A=\frac{1}{2}(16)^2sin(60^o)[/tex]

[tex]sin(60^o)=\frac{\sqrt{3}}{2}[/tex]

[tex]A=\frac{1}{2}(16)^2(\frac{\sqrt{3}}{2})[/tex]

[tex]A=64\sqrt{3}\ cm^2[/tex]