Respuesta :

Answer:

[tex]\frac{1}{2}[/tex]

Step-by-step explanation:

We are given that

[tex]r(s)=<cos s,sin s>[/tex]

[tex]0\leq s\leq \frac{3\pi}{2}[/tex]

Line integral=[tex]\int_{0}^{\frac{3\pi}{2}}xy ds[/tex]

Where [tex]x=cos s,y=sin s[/tex]

Line integral=[tex]\int_{0}^{\frac{3\pi}{2}}coss sinsds[/tex]

Line integral=[tex]\frac{1}{2}\int_{0}^{\frac{3\pi}{2}}(2cosssin s)ds[/tex]

Line integral=[tex]\frac{1}{2}\int_{0}^{\frac{3\pi}{2}}sin2s ds[/tex]

By using the formula [tex]2sin scos s=sin2s[/tex]

Line integral=[tex]\frac{1}{4}[-cos2s]^{\frac{3\pi}{2}}_{0}[/tex]

By using the formula

[tex]\int sinx dx=-cos x[/tex]

Line integral=[tex]-\frac{1}{4}\times(cos 3\pi-cos 0)=-\frac{1}{4}(-1-1)=\frac{1}{2}[/tex]