Answer:
Explanation:
1. Separate variables:
[tex]\dfrac{dP}{dt}+P=10\\ \\ \\ \\\dfrac{dP}{dt}=-P+10\\ \\ \\ \dfrac{dP}{-P+10}=dt[/tex]
2. Find the indefinite integrals
[tex]-\ln{(10-P)}=t+C[/tex]
3. Solve for P
[tex]10-P=e^{-t+C}\\ \\ 10-P=Ke^{-t}\\ \\ P=10-Ke^{-t}[/tex]
4. Use the initial condition, P(0) = 4, to find K:
5. Substitute K = 6 into the integrated equation:
[tex]P=10-6e^{-t}[/tex]
That is the option C.