To assess the accuracy of a laboratory scale, a standard weight that is known to weigh 1 gram is repeatedly weighed 4 times. The resulting measurements (in grams) are: 0.95,1.02, 1.01, 0.98. Assume that the weighings by the scale when the true weight is 1 gram are normally distributed with mean μ. Use these data to compute a 95% confidence interval for μ.

Respuesta :

lucic

Answer:

(0.9464,1.034)

Step-by-step explanation:

First find the mean μ  of all values as;

(0.95+1.02+ 1.01+ 0.98 ) /4 =0.99

μ=0.99

Find the standard deviation as;

-For each value subtract the mean and square the results

0.95-0.99 = -0.04 , -0.04² = 0.0016

1.02-0.99= 0.03, 0.03²=0.0009

1.01-0.99= 0.02, 0.02²= 0.0004

0.98-0.99 = -0.01, -0.01²=0.0001

Find mean of squared deviations as;

(0.0016+0.0009+0.0004+0.0001)/4 =0.00075 ----variance

Standard deviation = √0.00075 = 0.0274

δ = 0.0274

n=4

Thus n< 30 , confidence interval for μ = x ± t*δ/√n ---------(i)

Degree of freedom (df) = n-1 =4-1 =3

The t value for 95% confidence with df= 3 is t=3.182

Substituting the values in equation (i)

0.99 ± 3.182 * 0.0274/√4

0.99 ± 3.182 * 0.0274/2

0.99 ± 3.182 * 0.0137

0.99 ± 0.0436

(0.9464,1.034)

[tex]95[/tex]% confidence interval for [tex]\mu \ is \ (0.9397,1.0403)[/tex].

To understand the calculations, check below.

Confidence interval:

The confidence level represents the proportion (frequency) of acceptable confidence intervals that contain the true value of the unknown parameter. So that the proportion of the range contains the true value of the parameter that will be equal to the confidence level.

Measurements in grams: [tex]x_{i} =0.95,1.02,1.01,0.98[/tex]

Mean of measurements: Sample mean:[tex]\bar{x}=\frac{\sum x}{n}=\frac{0.95+1.02+1.01+0.98}{4}[/tex]

                                                                    [tex]=\frac{3.96}{4}=0.99[/tex]  

Sample size: [tex]4[/tex]

The standard deviation of measurements: Sample Standard deviation: [tex]S=\sqrt{\frac{\sum \left ( x-\bar{x} \right )^{2}}{n-1}} \\ =\sqrt{\frac{{\left ( 0.95-0.99 \right )^{2}+\left ( 1.02-0.99 \right)^{2}+\left ( 1.01-0.99 \right )^{2}+\left ( 0.98-0.99 \right )^{2}} }{4-1}} \\ =\sqrt{0.001}=0.0316[/tex]

Confidence interval for [tex]\mu[/tex]

[tex]\bar{x}\pm t_{a/2}\times \frac{s}{\sqrt{n}}[/tex]

[tex]\alpha =\frac{\left ( 100-95 \right )}{100}=0.05;\frac{\alpha }{2}=0.025[/tex]

Degrees of freedom = sample size[tex]-1=n-1=4-1=3[/tex]

[tex]t_{0.025}[/tex] for [tex]3[/tex] degrees of freedom[tex]=3.182[/tex]

[tex]95[/tex]% confidence interval for [tex]\mu[/tex]

[tex]\bar{x}\pm t_{0.025} \times\frac{s}{\sqrt{n} } =0.99\pm3.182\times\frac{0.0316}{\sqrt{4} \\}\\=0.99\pm0.0503\\=(0.9397,1.0403)[/tex]

Learn more about the topic of Confidence interval: https://brainly.com/question/23630128