Respuesta :

Answer:

To make f continuous at [tex]x=2[/tex], [tex]f(2)[/tex] should be defined [tex]x = 2.[/tex]

Step-by-step explanation:

A function, let say [tex]f(x)[/tex], is defined at [tex]x = c[/tex] is continuous at [tex]x = c[/tex]

If the limit of [tex]f(x)[/tex] as [tex]x[/tex] approaches [tex]c[/tex] is equal to the value of [tex]f(x)[/tex] at  [tex]x = c[/tex].

Mathematically it is written as:

if

[tex]\lim _{x\to c}\:f\left(x\right)=f\left(c\right)[/tex]

then

[tex]f(x)[/tex] is continuous at  [tex]x = c[/tex].

So from the above definition, we conclude that:

To make f continuous at [tex]x=2[/tex], [tex]f(2)[/tex] should be defined [tex]x = 2.[/tex]

i.e.

if

[tex]\lim _{x\to 2}\:f\left(x\right)=f\left(2\right)[/tex]

then

[tex]f(x)[/tex] is continuous at  [tex]x = 2[/tex].

To make [tex]f[/tex] continues at [tex]x=2[/tex]   [tex]f(2)[/tex]  should be defined at [tex]x=2[/tex]

Given-

Let [tex]f[/tex] be a real function subset of the real numbers and let [tex]c[/tex] be a point in the  domain of function [tex]f[/tex]. Then [tex]f[/tex] is continuous at [tex]c[/tex] if,

[tex]\lim_{x-c} f(x)=f(c)[/tex]

when the limit of left hand, limit of right hand and the value of function at [tex]x=c[/tex] exist and are equal to each other, then function [tex]f[/tex] is said to be continues at [tex]x=c[/tex]. Its expression can be given as,

[tex]\lim_{x-c} f(x)=f(c)=\lim_{x-c'}[/tex]

Now for the given function [tex]f[/tex], to make [tex]f[/tex] continues at [tex]x=2[/tex]

[tex]\lim_{x-2} f(x)=f(2)[/tex]

thus function  [tex]f(2)[/tex]  should be defined at [tex]x=2[/tex].

Hence, To make [tex]f[/tex] continues at [tex]x=2[/tex]   [tex]f(2)[/tex]  should be defined at [tex]x=2[/tex]

For more about the continues function, follow the link below-

https://brainly.com/question/21447009