A sheet of paper contains 18 square feet. The top and bottom margins are 9inches and the side margins are 6 inches. What are the dimensions of the pagethat has the largest printed area?

Respuesta :

Answer:

The dimensions of the page are

3.46 ft by 5.20 ft

Step-by-step explanation:

Let

x---> the length of the sheet of paper in feet

y ---> the width of the sheet of paper in feet

[tex]A=xy[/tex]

[tex]A=18\ ft^2[/tex]

so

[tex]18=xy[/tex]

[tex]y=\frac{18}{x}[/tex] -----> equation A

Remember that

[tex]1\ ft=12\ in[/tex]

Convert the margins into feet

[tex]9\ in=9\12=0.75\ ft[/tex]

[tex]6\ in=6\12=0.50\ ft[/tex]

so

we know that

The area of the largest printed area is given by

[tex]A=(y-0.75-0.75)(x-0.50-0.50)[/tex]

[tex]A=(y-1.50)(x-1)[/tex]

[tex]A=xy-y-1.50x+1.50[/tex]

substitute equation A in the above expression

[tex]A=x(\frac{18}{x})-\frac{18}{x}-1.50x+1.50\\[/tex]

[tex]A=18-\frac{18}{x}-1.50x+1.50[/tex]

[tex]A=19.50-\frac{18}{x}-1.50x[/tex]

Now we have an output (A) in terms of only one variable (x),

so

we differentiate:

[tex]\frac{dA}{dx}=\frac{18}{x^2}-1.50[/tex]

equate to zero

[tex]\frac{18}{x^2}=1.50[/tex]

[tex]x^2=12\\x=3.46\ ft[/tex]

Find the value of y

[tex]18=(3.46)y\\y=5.20\ ft[/tex]

therefore

The dimensions of the page are

3.46 ft by 5.20 ft

The required dimensions are,

[tex]x+18=3\sqrt{3}+18\\ y+12=2\sqrt{3}+12[/tex]

Area of the rectangle:

The formula of the area of the rectangle is [tex]A=l \times b[/tex]

Let [tex]A[/tex] be the area of the paper then,

[tex]A=(x+18)(y+12)...(1)[/tex]

And the printed area is [tex]xy=18...(2)[/tex]

Now, from the equation (1) and (2) we get,

[tex]A=(x+18)(\frac{18}{x}+12)\\ A=234+12x+\frac{324}{x} ..(3)[/tex]

Now, differentiating equation (3)

[tex]\frac{dA}{dx}=12-\frac{324}{x^2} \\\frac{dA}{dx}=0\\12-\frac{324}{x^2} =0\\x=3\sqrt{3}[/tex]

Substituting the obtained value of [tex]x[/tex] into the equation (2)

[tex]x+18=3\sqrt{3}+18\\ y+12=2\sqrt{3}+12[/tex]

Learn more about the topic area of the rectangle:

brainly.com/question/18251225