Respuesta :
Answer:
6.58 atm total
3.29 atm NO2
3.29 atm O2
Explanation:
Balanced equation:
O3 + NO → NO2 + O2
There are equal numbers of moles of both reactants, so neither is in excess and either could be considered the limiting reactant.
( 1.30 mol NO) x (1 mol NO2 / 1 mol NO) = 1.30 mol NO2
( 1.30 mol NO) x (1 mol O2 / 1 mol NO) = 1.30 mol O2
Total pressure by using the formula;
P = nRT / V
= ( 1.30 mol + 1.30 mol) x (0.08205746 L atm/K mol) x (401.0 K) / (13.0 L)
= 6.58 atm
Partial pressure for NO2;
(6.58 atm) x (1.30 mol NO2) / (1.30 mol + 1.30 mol)
= 3.29 atm NO2
Partial pressure for O2
6.58 atm total - 3.29 atm NO2
= 3.29 atm O2
1. The partial pressure of nitrogen dioxide ([tex]NO_2[/tex]) is equal to 3.29 atm.
2. The partial pressure of oxygen gas ([tex]O_2[/tex]) is equal to 3.29 atm.
3. The total pressure in the flask at the end of the chemical reaction is 6.58 atm.
Given the following data:
- Volume of flask = 13.0 Liters
- Number of moles of NO = 1.30 moles.
- Number of moles of [tex]O_3[/tex] = 1.30 moles.
- Temperature = 401.0 K.
Scientific data:
- Ideal gas constant, R = 0.0821L⋅atm/mol⋅K
To determine the partial pressure of each product and the total pressure in the flask at the end of the chemical reaction:
First of all, we would write a balanced chemical equation for the chemical reaction as follows:
[tex]O_3 + NO \rightarrow NO_2+O_2[/tex]
Since the numbers of moles of reactants are equal, the total number of moles of products is:
[tex]n=1.3+1.3[/tex]
n = 2.6 moles
Now, we can find the total pressure in the flask at the end of the chemical reaction by using the ideal gas law equation;
[tex]PV=n RT[/tex]
Where;
- P is the pressure.
- V is the volume.
- n is the numbers of moles of gas.
- R is the ideal gas constant.
- T is the temperature.
Making P the subject of formula, we have;
[tex]P=\frac{nRT}{V}[/tex]
Substituting the parameters into the formula, we have;
[tex]P=\frac{2.6 \times 0.0821 \times 401}{13}\\\\P=\frac{85.597}{13}[/tex]
Total pressure, P = 6.58 atm.
Next, we would determine the partial pressure of each product:
[tex]Molefraction \;of \;a \;substance =\frac{No.\; of \; moles \;of \;substance}{Total \;no. \;of \; moles \;of \;substances}[/tex]
[tex]Molefraction \;of \;a \;substance =\frac{1.3}{2.6} \\\\Molefraction \;of \;a \;substance =0.5[/tex]
For [tex]NO_2[/tex]:
[tex]Partial \;pressure = Molefraction \times Total\;pressure\\\\Partial \;pressure = 0.5 \times 6.58[/tex]
Partial pressure of [tex]NO_2[/tex] = 3.29 atm.
For [tex]O_2[/tex]:
[tex]Partial \;pressure = Molefraction \times Total\;pressure\\\\Partial \;pressure = 0.5 \times 6.58[/tex]
Partial pressure of [tex]O_2[/tex] = 3.29 atm.
Read more: https://brainly.com/question/24290885