Respuesta :
Answer:
The concentration of Phosphoric acid required for the neutralization described = 0.165 M
Explanation:
Given,
Volume of NaOH = V = 24.0 mL
Concentration of HCl = Cₐ = 0.193 M
Volume of HCl = Vₐ = 19.5 mL
NaOH + HCl -----> NaCl + H₂O
1 mole of NaOH reacts with 1 mole of HCl
Using the equivalence point expression
(CₐVₐ)/(CV) = (nₐ/n)
where
Cₐ = concentration of acid = 0.193 M
Vₐ = volume of acid = 19.5 mL
C = concentration of base = ?
V = volume of base = 24.0 mL
nₐ = Stoichiometric coefficient of acid in the balanced equation = 1
n = Stoichiometric coefficient of base in the balanced equation = 1
(CₐVₐ)/(CV) = (nₐ/n)
(0.193 × 19.5)/(C × 24) = 1
(C × 24) = 3.7635
C = (3.7635/24) = 0.157 M
This NaOH is then reacted with phosphoric acid.
Phosphoric acid = H₃PO₄
3NaOH + H₃PO₄ --------> Na₃PO₄ + 3H₂O
3 moles of NaOH reacts with 1 mole of Phosphoric acid.
Using the equivalence point expression
(CₐVₐ)/(CV) = (nₐ/n)
where
Cₐ = concentration of acid = ?
Vₐ = volume of acid = 34.8 mL
C = concentration of base = 0.157 M
V = volume of base = 11.0 mL
nₐ = Stoichiometric coefficient of acid in the balanced equation = 1
n = Stoichiometric coefficient of base in the balanced equation = 3
(CₐVₐ)/(CV) = (nₐ/n)
(Cₐ × 11)/(0.157 × 34.8) = (1/3)
Cₐ × 11 × 3 = 0.157 × 34.8 × 1
33Cₐ = 5.457
Cₐ = (5.457/32)
Cₐ = 0.165 M
Hence, the concentration of Phosphoric acid required for the neutralization described = 0.165 M
Hope this Helps!!!