Answer:
n=438
Step-by-step explanation:
-Given the sample proportion [tex]\hat p=0.24[/tex] and the confidence level is 95%.
-The sample size can be calculated using the formula;
[tex]ME=z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
#Substitute parameters in the formula and make n the subject of the formula;
[tex]ME=z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}\\\\=z_{0.025}\sqrt{\frac{\hat p(1-\hat p)}{n}}\\\\n=(\frac{z_{0.025}}{ME})^2\hat p(1-\hat p)\\\\\\=(\frac{1.96}{0.04})^2\times 0.24\times 0.76\\\\=437.94\approx 438[/tex]
Hence, the desired sample size is n=438