a rectangle field has an anrea of 40cm^2. if one side of the field is 3m longer than the other side, find the new area of the field where the length of each side is increased by 10%​

Respuesta :

The area of the field where the length of each side is increased by 10% is 48.4 [tex]cm^{2}[/tex].

Step-by-step explanation:

The given is,

               A rectangle field has an area of 40 [tex]cm^{2}[/tex]

               If one side of the field is 3 cm longer than the other side

               The length of new area in each side is increased by 10%

Step:1

          Let,

                          [tex]b[/tex] - One side of rectangle

                          [tex]l[/tex] - Other side of rectangle

          From given.

                         [tex]l[/tex] -  [tex]b[/tex] +3

           Formula for area of rectangle,

                   [tex]Area, a = lb[/tex]      

                          40 = ( b+3) × b

                         40 = [tex]b^{2}[/tex] + 3b

           Solving the above the equation,

                          b = 5 cm

                            l = 8 cm

Step:2

          If the area of rectangle increased by 10%,

                            l = 8 + ( 8 × [tex]\frac{10}{100}[/tex] )

                              = 8.8

                           b = 5 + ( 5 × [tex]\frac{10}{100}[/tex] )

                              = 5.5

         Area of rectangle is,

                      a = ( 8.8 × 5.5 )

                        = 48.4 square centimeters

Result:

        The area of the field where the length of each side is increased by 10% is 48.4 [tex]cm^{2}[/tex], if a rectangle field has an area of 40 square centimeters and one side of the field is 3 cm longer than the other side.