Respuesta :

Given:

It is given that the function is [tex]f(x)=\log _{2}(4 x)[/tex]

We need to determine the average rate of change of the function over the interval x = 2 to x = 8.

Value of f(2):

Substituting x = 2 in the function, we get;

[tex]f(2)=\log _{2}(4 (2))[/tex]

[tex]f(2)=\log _{2}(8)[/tex]

[tex]f(2)=3[/tex]

Thus, the value of f(2) is 3.

Value of f(8):

Substituting x = 8 in the function, we get;

[tex]f(8)=\log _{2}(4 (8))[/tex]

[tex]f(8)=\log _{2}(32)[/tex]

[tex]f(8)=5[/tex]

Thus, the value of f(8) is 5.

Average rate of change:

The average rate of change can be determined using the formula,

[tex]Average=\frac{f(b)-f(a)}{b-a}[/tex]

Substituting a = 2 and b = 8 in the above formula, we get;

[tex]Average=\frac{f(8)-f(2)}{8-2}[/tex]

[tex]Average=\frac{5-3}{8-2}[/tex]

[tex]Average=\frac{2}{6}[/tex]

[tex]Average=\frac{1}{3}[/tex]

Thus, the average rate of change over the interval x = 2 to x = 8 is [tex]\frac{1}{3}[/tex]