Respuesta :

caylus
Hello,

Answer A

x^3-5x²-3x+15=x^2(x-5)-3(x-5)
=(x-5)(x^2-3)
=(x-5)(x+√3)(x-√3)


Answer:

A


Step-by-step explanation:

To find the zeros of the function given, we set [tex]f(x)=0[/tex]. We have:

[tex]x^{3}-5x^{2}-3x+15=0[/tex]

We group first two terms together and last two terms together. Then we take common terms and combine.

[tex](x^{3}-5x^{2})+(-3x+15)=0\\x^{2}(x-5)-3(x-5)=0\\(x^{2}-3)(x-5)=0[/tex]

Here, EITHER  [tex]x^{2}-3=0[/tex]  OR [tex]x-5=0[/tex]

  • Solving first one, we have:

[tex]x^{2}-3=0\\x^{2}=3\\x=\sqrt{3} , -\sqrt{3}[/tex]

  • Solving second one, we have:

[tex]x-5=0\\x=5[/tex]

Thus three zeros of the function are [tex]\sqrt{3}[/tex] , [tex]-\sqrt{3}[/tex] , and [tex]5[/tex]

Answer choice A is right.