You are given the sample mean and the population standard deviation. Use this information to construct the​ 90% and​ 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. If​ convenient, use technology to construct the confidence intervals.
A random sample of 60 home theater systems has a mean price of​$131.00. Assume the population standard deviation is​$18.80.

Construct a​ 90% confidence interval for the population mean.
The​ 90% confidence interval is (_____,_____0
​(Round to two decimal places as​ needed.)

Construct a​ 95% confidence interval for the population mean.

The​ 95% confidence interval is(_____,____)
​(Round to two decimal places as​ needed.)


Interpret the results. Choose the correct answer below.
A.
With​ 90% confidence, it can be said that the population mean price lies in the first interval. With​ 95% confidence, it can be said that the population mean price lies in the second interval. The​95% confidence interval is narrower than the​ 90%.
B.
With​ 90% confidence, it can be said that the population mean price lies in the first interval. With​ 95% confidence, it can be said that the population mean price lies in the second interval. The​95% confidence interval is wider than the​ 90%.
C.
With​ 90% confidence, it can be said that the sample mean price lies in the first interval. With​ 95% confidence, it can be said that the sample mean price lies in the second interval. The​ 95% confidence interval is wider than the​ 90%

Respuesta :

Answer:

With​ 90% confidence, it can be said that the population mean price lies in the first interval. With​ 95% confidence, it can be said that the population mean price lies in the second interval. The​ 95% confidence interval is wider than the​ 90%.

Step-by-step explanation:

We are given that a random sample of 60 home theater systems has a mean price of​$131.00. Assume the population standard deviation is​$18.80.

  • Firstly, the pivotal quantity for 90% confidence interval for the  population mean is given by;

                            P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\bar X[/tex] = sample mean price = $131

            [tex]\sigma[/tex] = population standard deviation = $18.80

            n = sample of home theater = 60

            [tex]\mu[/tex] = population mean

Here for constructing 90% confidence interval we have used One-sample z test statistics as we know about the population standard deviation.

So, 90% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-1.645 < N(0,1) < 1.645) = 0.90  {As the critical value of z at 5% level

                                                   of significance are -1.645 & 1.645}  

P(-1.645 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.645) = 0.90

P( [tex]-1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.90

P( [tex]\bar X-1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.90

90% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]

                                                  = [[tex]131-1.645 \times {\frac{18.8}{\sqrt{60} } }[/tex] , [tex]131+1.645 \times {\frac{18.8}{\sqrt{60} } }[/tex] ]

                                                  = [127.01 , 134.99]

Therefore, 90% confidence interval for the population mean is [127.01 , 134.99].

  • Now, the pivotal quantity for 95% confidence interval for the  population mean is given by;

                            P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\bar X[/tex] = sample mean price = $131

            [tex]\sigma[/tex] = population standard deviation = $18.80

            n = sample of home theater = 60

            [tex]\mu[/tex] = population mean

Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about the population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                   of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]

                                                  = [[tex]131-1.96 \times {\frac{18.8}{\sqrt{60} } }[/tex] , [tex]131+1.96 \times {\frac{18.8}{\sqrt{60} } }[/tex] ]

                                                  = [126.24 , 135.76]

Therefore, 95% confidence interval for the population mean is [126.24 , 135.76].

Now, with​ 90% confidence, it can be said that the population mean price lies in the first interval. With​ 95% confidence, it can be said that the population mean price lies in the second interval. The ​95% confidence interval is wider than the​ 90%.