Respuesta :

Answer:

[tex]x=2\sqrt{6}[/tex]

Step-by-step explanation:

Use the Pythagorean theorem:

[tex]a^2+b^2=c^2[/tex]

a and b are the legs and c is the hypotenuse. Insert the values:

[tex]\sqrt{10}^2+\sqrt{14}^2=x^2[/tex]

Simplify exponents using the rule [tex]\sqrt{x}^2=x[/tex] :

[tex]10+14=x^2[/tex]

Simplify addition:

[tex]24=x^2\\x^2=24[/tex]

Find the square root:

[tex]\sqrt{x^2}=\sqrt{24}\\ x=\sqrt{24}[/tex]

Simplify in radical form: Find a common factor of 24 that is a perfect square:

[tex]\sqrt{24}=\sqrt{4*6}[/tex]

Separate:

[tex]\sqrt{4}*\sqrt{6}[/tex]

Simplify:

[tex]2*\sqrt{6}\\x=2\sqrt{6}[/tex]

Finito.

Answer:    x = √24

or That is [tex]\sqrt{4*6} =2\sqrt{6}[/tex]

Step-by-step explanation:

[tex]\sqrt{10^{2} } =10[/tex]   [tex]\sqrt{14^{2} } =14[/tex]

[tex]a^{2} +b^{2} =c^{2}[/tex]

10 + 14 = 24 .That is [tex]c^{2}[/tex]

Take the square root of 24 to get √24 .    That is [tex]\sqrt{4*6} =2\sqrt{6}[/tex]