Answer:
x = 1
Step-by-step explanation:
[tex] {5}^{(3x + 5)} = \frac{1}{25 ^{(1 - 5x)} } \\ \\ {5}^{(3x + 5)} = \frac{1}{( {5}^{2}) ^{(1 - 5x)} } \\ \\ {5}^{(3x + 5)} = \frac{1}{{5} ^{2(1 - 5x)} } \\ \\ {5}^{(3x + 5)} = {5}^{ - 2(1 - 5x)} \\ \\ 3x + 5 = - 2(1 - 5x) \\ \\ 3x + 5 = - 2 + 10x \\ \\ 5 + 2 = 10x - 3x \\ 7 = 7x \\ \\ x = \frac{7}{7} \\ \\ \huge \red { \boxed{x = 1}}[/tex]