Liliana wants to write an equivalent expression for n + 3 minus 5 n + 6. Which of her attempts uses the algebraic properties correctly?

Commutative property: n minus 5 n + 3 + 6. Associative property: (1 n minus 5 n) + (3 + Distributive property: (1 minus 5) n + (3 + 6). Addition property: negative 4 n + 9.

Associative property: n minus 5 n + 3 + 6. Commutative property: (1 n minus 5 n) + (3 + 6). Distributive property: (1 minus 5) n + (3 + 6). Addition property: negative 4 n + 9.

Addition property: n minus 5 n + 3 + 6. Associative property: (1 n minus 5 n) + (3 + 6). Distributive property (1 minus 5) n + (3 + 6). Commutative property: negative 4 n + 9.

Commutative property: n minus 5 n + 3 + 6. Distributive property: (1 n minus 5 n) + (3 + 6). Associative property: (1 minus 5) n + (3 + 6). Addition property: negative 4 n + 9.

Respuesta :

Answer:

Option A.

Step-by-step explanation:

The given equation is

[tex]n+3-5n+6[/tex]

Liliana wants to write an equivalent expression.

It can be written as

[tex]n+(3-5n)+6[/tex]

Using commutative property, we get  

[tex]n-5n+3+6[/tex]             [tex][\because A+B=B+A][/tex]

Using associative property, we get

[tex](n-5n)+(3+6)[/tex]             [tex][\because A+(B+C)=(A+B)+C][/tex]

Using distributive property, we get

[tex](1-5)n+(3+6)[/tex]             [tex][\because An+Bn=(A+B)n][/tex]

Using addition property, we get

[tex]-4n+9[/tex]

Therefore, the correct option is A.

Answer:

correct answer: a

Step-by-step explanation: