contestada

Simplify. Your answer should contain only positive exponents with no fractional exponents in the denominator.

Simplify Your answer should contain only positive exponents with no fractional exponents in the denominator class=

Respuesta :

Answer:

[tex]\dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{4y^{2}}[/tex].

Step-by-step explanation:

The given expression is  

[tex]\dfrac{3y^{\frac{1}{4}}}{4x^{-\frac{2}{3}}y^{\frac{3}{2}}\cdot 3y^{\frac{1}{2}}}[/tex]

We need to simplify the expression such that answer should contain only positive exponents with no fractional exponents in the denominator.

Using properties of exponents, we get

[tex]\dfrac{3}{4\cdot 3}\cdot \dfrac{y^{\frac{1}{4}}}{x^{-\frac{2}{3}}y^{\frac{3}{2}+\frac{1}{2}}}[/tex]    [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]\dfrac{1}{4}\cdot \dfrac{y^{\frac{1}{4}}}{x^{-\frac{2}{3}}y^{2}}[/tex]

[tex]\dfrac{1}{4}\cdot \dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{y^{2}}[/tex]         [tex][\because a^{-n}=\dfrac{1}{a^n}][/tex]

[tex]\dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{4y^{2}}[/tex]

We can not simplify further because on further simplification we get negative exponents in numerator or fractional exponents in the denominator.

Therefore, the required expression is [tex]\dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{4y^{2}}[/tex].