In a lab, a colony of 100 bacteria is placed on a petri dish. The population triples every hour.

1. How would you estimate or find the population of bacteria in:

a. 4 hours?

b. 90 minutes?

c. 72 hour?

Respuesta :

Answer:

a). 8100 bacteria

b). 519 bacteria

c). Infinite

Step-by-step explanation:

Population growth of a bacteria is given by the exponential function,

f(x) = [tex]P_{0}(1+\frac{r}{100})^{t}[/tex]

Where f(x) = Population after time 't'

[tex]P_{0}[/tex] = Initial population

r = Growth rate

t = Duration after t hours

If "100 bacteria gets tripled every hour"

300 = [tex]100(1+\frac{r}{100})^{1}[/tex]

3 = 1 + [tex]\frac{r}{100}[/tex]

r = 100×(3 - 1)

r = 200

So the function is, f(x) = [tex]100(3)^{t}[/tex]

a). Population after 4 hours,

    f(4) = [tex]100(3)^{4}[/tex]

          = 8100 bacteria

b). Population after 90 minutes Or 1.5 hours

     f(1.5) = [tex]100(3)^{1.5}[/tex]

             = 519.61

             ≈ 519 bacteria

c). Population after 72 hours,

    f(72) = [tex]100(3)^{72}[/tex]

            = Infinite