Respuesta :

gmany

Answer:

[tex]\large\boxed{f'(x)=\dfrac{12x^2}{\sqrt{2x^3-1}}}[/tex]

Step-by-step explanation:

[tex]f(x)=4\sqrt{2x^3-1}=4\left(2x^3-1\right)^\frac{1}{2}\\\\f'(x)=4\cdot\dfrac{1}{2}(2x^3-1)^{-\frac{1}{2}}\cdot3\cdot2x^2=\dfrac{12x^2}{(2x^3-1)^\frac{1}{2}}=\dfrac{12x^2}{\sqrt{2x^3-1}}\\\\\text{used}\\\\\sqrt{a}=a^\frac{1}{2}\\\\\bigg[f\left(g(x)\right)\bigg]'=f'(g(x))\cdot g'(x)\\\\\bigg[nf(x)\bigg]'=nf'(x)\\\\(x^n)'=nx^{n-1}[/tex]