Respuesta :
[tex]Q1.\\\Omega=\{(x;\ y)|\ x,\ y\in\{1;\ 2;\ 3;\ 4;\ 5;\ ;6\}\}\\\\\overline{\overline{\Omega}}=6\cdot6=36\\\\A=\{(1;\ 6);\ (2;\ 5);\ (3;\ 4);\ (4;\ 3);\ (5;\ 2);\ (6;\ 1)\}\\\\\overline{\overline{A}}=6\\\\P(A)=\dfrac{\overline{\overline{A}}}{\overline{\overline{\Omega}}}\Rightarrow P(A)=\dfrac{6}{36}\leftarrow Answer[/tex]
[tex]Q2.\\3+4+8=15-number\ of\ all\ chips\\\\8\ white\ chips\\\\P(B)=\dfrac{8}{15}\cdot\dfrac{8}{15}=\dfrac{64}{225}\leftarrow Answer[/tex]
[tex]Q3.\\25-number\ of\ 2\\56-number\ of\ heat\\100-number\ of\ all\\\\\dfrac{25}{100}\cdot\dfrac{56}{100}=\dfrac{1400}{10000}\leftarrow Answer[/tex]
[tex]Q2.\\3+4+8=15-number\ of\ all\ chips\\\\8\ white\ chips\\\\P(B)=\dfrac{8}{15}\cdot\dfrac{8}{15}=\dfrac{64}{225}\leftarrow Answer[/tex]
[tex]Q3.\\25-number\ of\ 2\\56-number\ of\ heat\\100-number\ of\ all\\\\\dfrac{25}{100}\cdot\dfrac{56}{100}=\dfrac{1400}{10000}\leftarrow Answer[/tex]
[tex]Question \ 1)[/tex]
[tex] Two \ numbers \ written \ in \ a \ certain \ order \ are \ known \ as [/tex]
[tex]ordered \ pairs.[/tex]
[tex]Ordered \ pair \ that \ add \ up \ to \ 7 \ (6,1) (5,2) (4,3) (3,4) (2,5) (1,6)[/tex]
[tex]P(A)= \dfrac{6}{36} [/tex]
[tex]Question \ 2) [/tex] [tex]3+4+8=15 \ Total \ number \ of \ chips [/tex]
[tex]Where \ 8 \ represents \ = white[/tex]
[tex]P(B)= \dfrac{8}{15}* \dfrac{8}{15} = \dfrac{64}{225} = Solution[/tex]
[tex]Question \ 3) [/tex]
[tex]Convert \ to \ fraction \ and \ muliply[/tex]
[tex]The \ numerator \ in \ a \ fraction \ represents \ the \ number \ of \ pieces \ [/tex]
[tex]selected.[/tex][tex] If \ the \numerator \ is \ larger \ than \ the \ denominator, the \ number \ is \ larger \ [/tex][tex]than \ one.[/tex]
[tex]The \ denominator \ in \ a \ fraction \ represents \ the \ total \ number \ [/tex]
[tex]of \ equal \ size \ pieces \ that \ make \ up \ a \ whole. [/tex]
[tex] \dfrac{25}{100} * \dfrac{56}{100}= \dfrac{1400}{10000} [/tex]
[tex] Two \ numbers \ written \ in \ a \ certain \ order \ are \ known \ as [/tex]
[tex]ordered \ pairs.[/tex]
[tex]Ordered \ pair \ that \ add \ up \ to \ 7 \ (6,1) (5,2) (4,3) (3,4) (2,5) (1,6)[/tex]
[tex]P(A)= \dfrac{6}{36} [/tex]
[tex]Question \ 2) [/tex] [tex]3+4+8=15 \ Total \ number \ of \ chips [/tex]
[tex]Where \ 8 \ represents \ = white[/tex]
[tex]P(B)= \dfrac{8}{15}* \dfrac{8}{15} = \dfrac{64}{225} = Solution[/tex]
[tex]Question \ 3) [/tex]
[tex]Convert \ to \ fraction \ and \ muliply[/tex]
[tex]The \ numerator \ in \ a \ fraction \ represents \ the \ number \ of \ pieces \ [/tex]
[tex]selected.[/tex][tex] If \ the \numerator \ is \ larger \ than \ the \ denominator, the \ number \ is \ larger \ [/tex][tex]than \ one.[/tex]
[tex]The \ denominator \ in \ a \ fraction \ represents \ the \ total \ number \ [/tex]
[tex]of \ equal \ size \ pieces \ that \ make \ up \ a \ whole. [/tex]
[tex] \dfrac{25}{100} * \dfrac{56}{100}= \dfrac{1400}{10000} [/tex]