contestada

the number of quadratic equation having real roots and which do not change by squaring their roots is​

Respuesta :

Answer:

The formula for quadratic equation is [tex]\sqrt[n]{x+x^{2} } = 0[/tex]

Explanation:

[tex]ax^{2} + bx + c = 0\\a + b = -\frac{b}{a} \\ab = \frac{c}{a}\\\\a^{2} +b^{2} = \frac{c}{a}\\\\[/tex]

when c = 0,

[tex](\frac{b}{a})^{2} - 2 (\frac{c}{a})^{2} = - \frac{b}{a}[/tex]

[tex]\frac{b}{a} [( \frac{b}{a}) + 1] = 0\\b = 2c[/tex]

The formula for quadratic equation is

[tex]x^{2} - (1 + 1)x + 1 = 0\\x^{2} - 2x + 1 = 0\\[/tex]

if roots are 1 then,

[tex]x^{2} - x = 0[/tex]