Which expression is equivalent to the following complex fraction? StartFraction x Over x minus 3 EndFraction divided by StartFraction x squared Over x squared minus 9 EndFraction StartFraction x minus 3 Over x EndFraction StartFraction x + 3 Over 1 EndFraction StartFraction x + 3 Over x EndFraction StartFraction x Over x + 3 EndFraction

Respuesta :

Answer:

[tex](C) \dfrac{x+3}{x}[/tex]

Step-by-step explanation:

We want to determine an  equivalent expression to:

[tex]\dfrac{x}{x-3} \div \dfrac{x^2}{x^2-9}[/tex]

Step 1: Factorise [tex]x^2-9[/tex] using the difference of two squares.

[tex]x^2-9=x^2-3^2=(x-3)(x+3)[/tex]

Step 2: Change the division sign to multiplication

[tex]\dfrac{x}{x-3} \times \dfrac{(x-3)(x+3)}{x^2}[/tex]

Step 3: Cancel out common terms and simplify

[tex]= \dfrac{x+3}{x}[/tex]

The correct option is C.

The expression equivalent to given expression is [tex]\frac{x+3}{3}[/tex]

Given expression is,

                        [tex]\frac{x}{x-3}\div\frac{x^{2} }{x^{2} -9}[/tex]

Use factorization,   [tex]x^{2} -9=(x-3)(x+3)[/tex]

Now simplify the given expression.

                       [tex]\frac{x}{x-3}\div\frac{x^{2} }{x^{2} -9}\\\\=\frac{x}{x-3}*\frac{(x-3)(x+3)}{x^{2} } \\\\=\frac{x+3}{x}[/tex]

Hence, the expression equivalent to given expression is [tex]\frac{x+3}{3}[/tex]

Learn more:

https://brainly.com/question/1280754