Respuesta :
Answer:
[tex](C) \dfrac{x+3}{x}[/tex]
Step-by-step explanation:
We want to determine an equivalent expression to:
[tex]\dfrac{x}{x-3} \div \dfrac{x^2}{x^2-9}[/tex]
Step 1: Factorise [tex]x^2-9[/tex] using the difference of two squares.
[tex]x^2-9=x^2-3^2=(x-3)(x+3)[/tex]
Step 2: Change the division sign to multiplication
[tex]\dfrac{x}{x-3} \times \dfrac{(x-3)(x+3)}{x^2}[/tex]
Step 3: Cancel out common terms and simplify
[tex]= \dfrac{x+3}{x}[/tex]
The correct option is C.
The expression equivalent to given expression is [tex]\frac{x+3}{3}[/tex]
Given expression is,
[tex]\frac{x}{x-3}\div\frac{x^{2} }{x^{2} -9}[/tex]
Use factorization, [tex]x^{2} -9=(x-3)(x+3)[/tex]
Now simplify the given expression.
[tex]\frac{x}{x-3}\div\frac{x^{2} }{x^{2} -9}\\\\=\frac{x}{x-3}*\frac{(x-3)(x+3)}{x^{2} } \\\\=\frac{x+3}{x}[/tex]
Hence, the expression equivalent to given expression is [tex]\frac{x+3}{3}[/tex]
Learn more:
https://brainly.com/question/1280754