Answer:
Step-by-step explanation:
Hello!
The variable of interest is:
X: height of seaweed.
X~N(μ;σ²)
μ= 10 cm
σ= 2 cm
You have to find the value of the variable X that separates the bottom 0.30 of the distribution from the top 0.70
P(X≤x)= 0.30
P(X≥x)= 0.70
Using the standard normal distribution you have to find the value of Z that separates the bottom 0.30 from the top 0.70 and then using the formula Z= (X-μ)/σ translate the Z value to the corresponding X value.
P(Z≤z)= 0.30
In the body of the table look for the probability of 0.30 and reach the margins to form the Z value. The mean of the distribution is "0" so below 50% of the distribution you'll find negative values.
z= -0.52
Now you have to clear the value of X:
Z= (X-μ)/σ
Z*σ= X-μ
X= (Z*σ)+μ
X= (-0.52*2)+10= 8.96
The value of seaweed height that divides the bottom 30% from the top 70% is 8.96 cm
I hope this helps!