Respuesta :

Answer:

726.65 cubic inches

Step-by-step explanation:

We are going to assume that the head, middle and bottom are spheres.

The formula to get the volume of a sphere is

[tex]V= \frac{4}{3}\pi r^{2}[/tex] where r is the radius of the sphere.

Now, let's proceed to apply this formula to the 3 spheres of the snowman:

The head is 12 inches wide (diameter), thus, the radius would be 6 inches:

[tex]V= \frac{4}{3}\pi r^{2}\\V= \frac{4}{3}\pi 6^{2}\\V= \frac{4}{3}\pi 36\\V=\frac{144\pi }{3} \\V=38\pi[/tex] cubic inches

The middle is 16 inches wide (diameter), thus, the radius would be 8 inches.

[tex]V= \frac{4}{3}\pi r^{2}\\V= \frac{4}{3}\pi 8^{2}\\V= \frac{4}{3}\pi 64\\V=\frac{256\pi }{3} \\V=85.3\pi[/tex]  cubic inches

The bottom is 18 inches wide (diameter), thus the radius would be 9 inches.

[tex]V= \frac{4}{3}\pi r^{2}\\V= \frac{4}{3}\pi 9^{2}\\V= \frac{4}{3}\pi 81\\V=\frac{324\pi }{3} \\V=108\pi[/tex] cubic inches.

Now, to get the total volume of the snowman we're going to sum up the volume of all three spheres:

Total volume = [tex]38\pi +85.3\pi +108\pi =231.3\pi[/tex] cubic inches.

If we take pi = 3.1416,

Total volume = [tex]231.3(3.1416)=726.65[/tex] cubic inches.