Respuesta :
Answer:
20 J
Explanation:
From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.
m'u'+mu = V(m+m')........... Equation 1
Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.
make V the subject of the equation above
V = (m'u'+mu)/(m+m')............. Equation 2
Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).
Substitute into equation 2
V = [(2×5)+(8×0)]/(2+8)
V = 10/10
V = 1 m/s.
Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision
Total kinetic energy before collision = 1/2(2)(5²) = 25 J
Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J
Lost in kinetic energy = 25-5 = 20 J
The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.
Since there is a lost in kinetic energy, the collision is inelastic collision.
m'u'+mu = V(m+m')
[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]
Where
m' = mass of the moving object = 2 kg
m = mass of the stick = 8 kg,
u' = initial velocity of the moving object = 5 m/s
V = common velocity after collision= ?
u = 0 m/s (at rest).
put the values in the formula,
[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]
kinetic energy before collision
[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]
kinetic energy after collision
[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]
Lost in kinetic energy = 25-5 = 20 J
Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.
To know more about Kinetic energy,
https://brainly.com/question/12669551