Answer:
The total pressure is 3120 kilopascals.
Explanation:
The total pressure of this water flow is determined by the Bernoulli's Principle, which is the sum of dynamic ([tex]p_{d}[/tex]) and hydraulic pressure ([tex]p_{h}[/tex]). That is:
[tex]p_{T} = p_{d} + p_{h}[/tex]
[tex]p_{T} = \frac{1}{2}\cdot \rho \cdot v^{2} + \gamma \cdot z + p[/tex]
Where:
[tex]\rho[/tex] - Density, measured in kilograms per cubic meter.
[tex]v[/tex] - Flow velocity, measured in meters per second.
[tex]\gamma[/tex] - Specific weight, measured in newtons per cubic meter.
[tex]z[/tex] - Elevation, measured in meters.
[tex]p[/tex] - Static pressure, measured in pascals.
Given that [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]v = 71\,\frac{m}{s}[/tex], [tex]\gamma = 9800\,\frac{N}{m^{3}}[/tex], [tex]z = 54\,m[/tex] and [tex]p = 70000\,Pa[/tex], the total pressure is:
[tex]p_{T} = \frac{1}{2}\cdot \left(1000\,\frac{kg}{m^{3}} \right)\cdot \left(71\,\frac{m}{s} \right)^{2} + \left(9800\,\frac{N}{m^{3}} \right)\cdot (54\,m)+70000\,Pa[/tex]
[tex]p_{T} = 3119700\,Pa[/tex]
[tex]p_{T} = 3119,7\,kPa[/tex] (1 kPa = 1000 Pa)
[tex]p_{T} = 3120\,kPa[/tex]
The total pressure is 3120 kilopascals.