Respuesta :
Answer:
[tex]\frac{dm}{dt}=-\frac{m}{30}[/tex]
Step-by-step explanation:
We are given that
Volume of water in fish pond,V=3000 L
Mass of toxic chemical=5 kg
Rate=200L/min
Removes chemical=50%
We have to find the differential equation for the time.
Let mass of toxic at any time t= m kg
Rate=Rate in-Rate out
[tex]\frac{dm}{dt}=200\times 0-\frac{m}{3000}\times 200\times \frac{50}{100}[/tex]
[tex]\frac{dm}{dt}=0-\frac{m}{30}[/tex]
[tex]\frac{dm}{dt}=-\frac{m}{30}[/tex]
The differential equation for the time is [tex]\frac{dm}{dt} = -\frac{m}{30}[/tex]
The given parameters are:
- Volume of water in the pond, [tex]V=3000 L[/tex]
- Mass of the chemical, [tex]m =5 kg[/tex]
- Rate, [tex]r = 200L/min[/tex]
- Proportion of chemicals removed, [tex]p=50\%[/tex]
The differential equation for the time is then calculated as:
[tex]\frac{dm}{dt} = R_{in} -R_{out}[/tex]
Where:
[tex]R_{in} = 200 \times 0 = 0[/tex] --- the rate in
[tex].R_{out} = \frac{m}{3000} \times 200 \times 50\% = \frac{m}{30}[/tex] --- the rate out
Substitute these values in [tex]\frac{dm}{dt} = R_{in} -R_{out}[/tex]
[tex]\frac{dm}{dt} = 0 -\frac{m}{30}[/tex]
[tex]\frac{dm}{dt} = -\frac{m}{30}[/tex]
Hence, the differential equation for the time is [tex]\frac{dm}{dt} = -\frac{m}{30}[/tex]
Read more about differential equations at:
https://brainly.com/question/14763154