Respuesta :
Answer:
[tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]
Explanation:
Given that
Wavelength [tex]\lambda=588 \mathrm{nm}[/tex]
slit separation [tex]\mathrm{d}=2464 \mathrm{nm}[/tex]
slit screen distance [tex]\mathrm{D}=11 \mathrm{cm}[/tex]
We know that for double slit the maxima condition is that
[tex]\operatorname{dsin} \theta=m \lambda[/tex]
[tex]\sin \theta=\frac{m \lambda}{d}[/tex]
[tex]\theta=\sin ^{-1}\left(\frac{\mathrm{m} \lambda}{\mathrm{d}}\right)[/tex]
For small angle approximation, [tex]\sin \theta \approx \tan \theta \approx \theta[/tex]
[tex]\tan \theta=\frac{y_{m}}{D}[/tex]
[tex]y_{m}=D \times \tan \left[\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right][/tex]
Now [tex]y_{4}[/tex] [tex]y_{4}=D \times \tan \left[\sin ^{-1}\left(\frac{4 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{4 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=35.22 \mathrm{cm}[/tex]
Again [tex]y_{3}=D \times \tan \left[\sin ^{-1}\left(\frac{3 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{3 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=11.27 \mathrm{cm}[/tex]
Hence [tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]