The price of an article is marked 25% above the cost price. If it is sold
at the profit of Rs 500 after allowing 15% discount what will be its
selling price?
(Ans: 10170)

Respuesta :

Answer: 1250

Step-by-step explanation:

1) The price of an article is marked 25% above the cost price.

SP = CP x 1.25

2) If it is sold at the profit of Rs 500 after allowing 15% discount

SP = CP x 0.85 + 500

SP = 0.85CP + 500

1.25CP = 0.85CP + 500

1.25CP - 0.85CP = 500

0.40CP = 500

CP = 500 / 0.4 = 1250

Answer:

Rs 8500

solution,

Let C.P of article be X

[tex]mp = x + \frac{25}{100} \times x \\ \: \: \: \: = x + \frac{25x}{100} \\ = \frac{x \times 100 + 25x}{100} \\ = \frac{100x + 25x}{100} \\ = \frac{125x}{100} \\ sp = mp - \frac{15}{100} \times \frac{125x}{100} \\ \: \: \: \: = \frac{125x}{100} - \frac{15x}{80} \\ \: \: \: \: = \frac{125 x\times 4 - 15x \times 5}{400} \\ \: \: \: \: \: = \frac{500x - 75x}{400} \\ \: \: \: \: \: \: = \frac{425x}{400} \\ profit = sp - cp \\ or \: 500 = \frac{425x}{400} - x \\ or \: 500 = \frac{425x - x \times 400}{400} \\ or \: 500 = \frac{425x - 400x}{400} \\ or \: 500 = \frac{25x}{400} \\ or \: 25x = 200000 \\ or \: x = \frac{200000}{25} \\ x = 8000 \\ again \\ \: selling \: price = \frac{425x}{400} \\ \: \: \: \: \: \: \: \: \: \: \: = \frac{425 \times 8000}{400} \\ \: \: \: \: \: \: = \frac{3400000}{400} \\ \: \: \: \: \: \: = 8500[/tex]

hope this helps....

Good luck on your assignment...