Respuesta :

Answer:

a) The value of the median is 112

b) The value of the lower quartile is 95.59

Step-by-step explanation:

From the histogram, we look for the data values as follows

Score,                                       Frequency,          Cumulative , n

80 - 90,                                    2.6,                       2.6

90 - 100,                                   3.4,                       6

100 - 120,                                  5,                          11

120 - 140,                                  3,                          14

140 - 170,                                  2.4,                       16.4

170 - 200,                                 0.6,                       17

The median is therefore the (nth + 1)/2th value = (17 + 1)/2 = 9th value

The 9th value is between the 100 - 120 score values

We note that the previous n value before the 100 - 120 range = 6, therefore, the 9th value will be the weighted average in the 100 - 120 range of tha amount the 9th value is larger than the 6th value as follows;

9 - 6 = 3

The weighted average of 3 out 5 (11 - 6 = 5) of the 100 - 120 range which gives;

Therefore, the value of the median, Q₂ = 100 + (9 - 6)/(11 - 6))*(120 - 100) = 112

b) The lower quartile = Q₁ is given by the value at the (n +1)/4th position = (17 + 1)/4 = 4.5th position

From the cumulative frequency column, the 4.5th value is in the 90 - 100 score range

Similar to the previous question, we find the value of the lower quartile using the weighted average as follows;

Therefore, the value of the lower quartile, Q₁ = 90 + (4.5 - 2.6)/(6 - 2.6)×(100 - 90) = 95.59.