A boat starts off 34 miles directly west from the city of Uniontown. It travels due north at a speed of 41 miles per hour. After travelling 44 miles, how fast (in radians per hour) is the angle opposite the northward path changing?

Respuesta :

Given:

Let x=34 miles

y=44 miles

[tex]\frac{dy}{dt}=41 miles/hr[/tex]

To find:

[tex]\frac{d\theta}{dt}[/tex]

Solution:

[tex]Hypotenuse=\sqrt{(base)^2+(Perpendicular\;side)^2}[/tex]

Using the formula

[tex]Hypotenuse=\sqrt{(34)^2+(44)^2}=55.6 miles[/tex]

[tex]sec\theta=\frac{Hypotenuse}{Base}[/tex]

Using the formula

[tex]sec\theta=\frac{55.6}{34}[/tex]

[tex]tan\theta=\frac{Perpendicular\;side}{Base}[/tex]

Using the formula

[tex]tan\theta=\frac{y}{34}[/tex]

Differentiate w.r.t t

[tex]sec^2\theta\frac{d\theta}{dt}=\frac{1}{34}\frac{dy}{dt}[/tex]

Using the formula

[tex]\frac{d(tanx)}{dx}=sec^2 x[/tex]

Substitute the values

[tex](\frac{55.6}{34})^2\times \frac{d\theta}{dt}==\frac{1}{34}\times 41[/tex]

[tex]\frac{d\theta}{dt}=\frac{41\times (34)^2}{34\times (55.6)^2}[/tex]

[tex]\frac{d\theta}{dt}=0.45 rad/hour[/tex]

Ver imagen lublana