Answer:
a) Jack does more work uphill
b) Numerically, we can see that Jill applied the most power downhill
Explanation:
Jack's mass = 75 kg
Jill's mass = [tex]1.5x = 75[/tex]
Jill's mass = [tex]x = \frac{75}{1.5}[/tex] = 50 kg
distance up hill = 15 m
a) work done by Jack uphill = mgh
where g = acceleration due to gravity= 9.81 m/s^2
work = 75 x 9.81 x 15 = 11036.25 J
similarly,
Jill's work uphill = 50 x 9.81 x 15 = 7357.5 J
this shows that Jack does more work climbing up the hill
b) assuming Jack's time downhill to be t,
then Jill's time = [tex]\frac{t}{3}[/tex]
we recall that power is the rate in which work id done, i.e
P = [tex]\frac{work}{time}[/tex]
For Jack, power = [tex]\frac{11036.25}{t}[/tex]
For Jill, power = [tex]\frac{3*7357.5}{t}[/tex] = [tex]\frac{22072.5}{t}[/tex]
Numerically, we can see that Jill applied the most power downhill