Answer:
a) 5.10 mm
b) 4.90 mm
c) 1.67
d) upper specification lies at 5 standard deviations from mean.
Explanation:
Given:
Mean = 5.0mm
Standard deviation = 0.02 mm
a) The upper specification limit:
5.0 + 0.10
= 5.10 mm
b) The lower specification limit:
5.0 - 0.10
= 4.90 mm
c) The process capability index (CPk):
Use the formula below to find the process capability index
[tex] C_p_k = min (\frac{USL - mean}{3\sigma}, \frac{mean - LSL}{3\sigma}) [/tex]
Substitute figures:
[tex] C_p_k = min (\frac{5.1 - 5.0}{3*0.02}, \frac{5.0 - 4.9}{3*0.02}) [/tex]
[tex] C_p_k = min (\frac{0.1}{0.06}, \frac{0.1}{0.06}) [/tex]
[tex] C_p_k = min( 1.67, 1.67) [/tex]
[tex] C_p_k = 1.67 [/tex]
d) The upper specification lies at a distance of (5.1-5) = 0.1 mm
Standard deviation = 0.02 mm
upper specification lies at:
[tex] \frac{0.1}{0.02} = 5 [/tex]
Therefore, upper specification lies at 5 standard deviations from mean.