Respuesta :

Answer:

C = (2,2)

Step-by-step explanation:

B = (10 ; 2)

M = (6 ; 2)

C = (x ; y )

|___________|___________|

B (10;2)            M (6;2)             C ( x; y)

So:

dBM = dMC

√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 6)^2]

(2-2)^2 - (6-10)^2 = (y-2)^2 + (x - 6)^2

0 + (-4)^2 = (y-2)^2 + (x - 6)^2

16 = (y-2)^2 + (x - 6)^2

16 - (x - 6)^2 = (y-2)^2

Also:

2*dBM = dBC

2*√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 10)^2]

4*[(0)^2 + (-4)^2] = (y-2)^2 + (x - 10)^2

4*(16) = (y-2)^2 + (x - 10)^2

64 = (y-2)^2 + (x - 10)^2

64 = 16 - (x - 6)^2 + (x - 10)^2

48 = (x - 10)^2 - (x - 6)^2

48 = x^2 - 20*x + 100 - x^2 + 12*x - 36

48 = - 20*x + 100 + 12*x - 36

8*x = 16

x = 2

Thus:

16 - (x - 6)^2 = (y-2)^2

16 - (2 - 6)^2 = (y-2)^2

16 - (-4)^2 = (y-2)^2

16 - 16 = (y-2)^2

0 =  (y-2)^2

0 = y - 2

2 = y

⇒ C = (2,2)