Given the function [tex]h:x=px-\frac{5}{2}[/tex] and the inverse function [tex]h^{-1} :x=q+2x[/tex], where p and q are constants, find a) the value of p and q c)[tex]h^{-1} h(-3)[/tex]

Respuesta :

Answer:

[tex]p = \frac{1}{2}[/tex]

[tex]q = 5[/tex]

[tex]h^{-1}(h(3)) = 3[/tex]

Step-by-step explanation:

Given

[tex]h(x) = px - \frac{5}{2}[/tex]

[tex]h^{-1}(x) = q + 2x[/tex]

Solving for p and q

Replace h(x) with y in [tex]h(x) = px - \frac{5}{2}[/tex]

[tex]y = px - \frac{5}{2}[/tex]

Swap the position of y and d

[tex]x = py - \frac{5}{2}[/tex]

Make y the subject of formula

[tex]py = x + \frac{5}{2}[/tex]

Divide through by p

[tex]y = \frac{x}{p} + \frac{5}{2p}[/tex]

Now, we've solved for the inverse of h(x);

Replace y with [tex]h^{-1}(x)[/tex]

[tex]h^{-1}(x) = \frac{x}{p} + \frac{5}{2p}[/tex]

Compare this with [tex]h^{-1}(x) = q + 2x[/tex]

We have that

[tex]\frac{x}{p} + \frac{5}{2p} = q + 2x[/tex]

By direct comparison

[tex]\frac{x}{p} = 2x[/tex] --- Equation 1

[tex]\frac{5}{2p} = q[/tex]  --- Equation 2

Solving equation 1

[tex]\frac{x}{p} = 2x[/tex]

Divide both sides by x

[tex]\frac{1}{p} = 2[/tex]

Take inverse of both sides

[tex]p = \frac{1}{2}[/tex]

Substitute [tex]p = \frac{1}{2}[/tex] in equation 2

[tex]\frac{5}{2 * \frac{1}{2}} = q[/tex]

[tex]\frac{5}{1} = q[/tex]

[tex]5 = q[/tex]

[tex]q = 5[/tex]

Hence, the values of p and q are:[tex]p = \frac{1}{2}[/tex];  [tex]q = 5[/tex]

Solving for [tex]h^{-1}(h(3))[/tex]

First, we'll solve for h(3) using [tex]h(x) = px - \frac{5}{2}[/tex]

Substitute [tex]p = \frac{1}{2}[/tex];  and [tex]x = 3[/tex]

[tex]h(3) = \frac{1}{2} * 3 - \frac{5}{2}[/tex]  

[tex]h(3) = \frac{3}{2} - \frac{5}{2}[/tex]

[tex]h(3) = \frac{3 - 5}{2}[/tex]

[tex]h(3) = \frac{-2}{2}[/tex]

[tex]h(3) = -1[/tex]

So; [tex]h^{-1}(h(3))[/tex] becomes

[tex]h^{-1}(-1)[/tex]

Solving for [tex]h^{-1}(-1)[/tex] using [tex]h^{-1}(x) = q + 2x[/tex]

Substitute [tex]q = 5[/tex] and [tex]x = -1[/tex]

[tex]h^{-1}(x) = q + 2x[/tex] becomes

[tex]h^{-1}(-1) = 5 + 2 * -1[/tex]

[tex]h^{-1}(-1) = 5 - 2[/tex]

[tex]h^{-1}(-1) = 3[/tex]

Hence;

[tex]h^{-1}(h(3)) = 3[/tex]