Respuesta :
Answer:
[tex]p = \frac{1}{2}[/tex]
[tex]q = 5[/tex]
[tex]h^{-1}(h(3)) = 3[/tex]
Step-by-step explanation:
Given
[tex]h(x) = px - \frac{5}{2}[/tex]
[tex]h^{-1}(x) = q + 2x[/tex]
Solving for p and q
Replace h(x) with y in [tex]h(x) = px - \frac{5}{2}[/tex]
[tex]y = px - \frac{5}{2}[/tex]
Swap the position of y and d
[tex]x = py - \frac{5}{2}[/tex]
Make y the subject of formula
[tex]py = x + \frac{5}{2}[/tex]
Divide through by p
[tex]y = \frac{x}{p} + \frac{5}{2p}[/tex]
Now, we've solved for the inverse of h(x);
Replace y with [tex]h^{-1}(x)[/tex]
[tex]h^{-1}(x) = \frac{x}{p} + \frac{5}{2p}[/tex]
Compare this with [tex]h^{-1}(x) = q + 2x[/tex]
We have that
[tex]\frac{x}{p} + \frac{5}{2p} = q + 2x[/tex]
By direct comparison
[tex]\frac{x}{p} = 2x[/tex] --- Equation 1
[tex]\frac{5}{2p} = q[/tex] --- Equation 2
Solving equation 1
[tex]\frac{x}{p} = 2x[/tex]
Divide both sides by x
[tex]\frac{1}{p} = 2[/tex]
Take inverse of both sides
[tex]p = \frac{1}{2}[/tex]
Substitute [tex]p = \frac{1}{2}[/tex] in equation 2
[tex]\frac{5}{2 * \frac{1}{2}} = q[/tex]
[tex]\frac{5}{1} = q[/tex]
[tex]5 = q[/tex]
[tex]q = 5[/tex]
Hence, the values of p and q are:[tex]p = \frac{1}{2}[/tex]; [tex]q = 5[/tex]
Solving for [tex]h^{-1}(h(3))[/tex]
First, we'll solve for h(3) using [tex]h(x) = px - \frac{5}{2}[/tex]
Substitute [tex]p = \frac{1}{2}[/tex]; and [tex]x = 3[/tex]
[tex]h(3) = \frac{1}{2} * 3 - \frac{5}{2}[/tex]
[tex]h(3) = \frac{3}{2} - \frac{5}{2}[/tex]
[tex]h(3) = \frac{3 - 5}{2}[/tex]
[tex]h(3) = \frac{-2}{2}[/tex]
[tex]h(3) = -1[/tex]
So; [tex]h^{-1}(h(3))[/tex] becomes
[tex]h^{-1}(-1)[/tex]
Solving for [tex]h^{-1}(-1)[/tex] using [tex]h^{-1}(x) = q + 2x[/tex]
Substitute [tex]q = 5[/tex] and [tex]x = -1[/tex]
[tex]h^{-1}(x) = q + 2x[/tex] becomes
[tex]h^{-1}(-1) = 5 + 2 * -1[/tex]
[tex]h^{-1}(-1) = 5 - 2[/tex]
[tex]h^{-1}(-1) = 3[/tex]
Hence;
[tex]h^{-1}(h(3)) = 3[/tex]