Respuesta :
Answer:
On that line segment between the two charges, at approximately [tex]0.7\; \rm m[/tex] away from the smaller charge (the one with a magnitude of [tex]5 \times 10^{-19}\; \rm C[/tex],) and approximately [tex]1.3\; \rm m[/tex] from the larger charge (the one with a magnitude of [tex]20 \times 10^{-19}\; \rm C[/tex].)
Explanation:
Each of the two point charges generate an electric field. These two fields overlap at all points in the space around the two point charges. At each point in that region, the actual electric field will be the sum of the field vectors of these two electric fields.
Let [tex]k[/tex] denote the Coulomb constant, and let [tex]q[/tex] denote the size of a point charge. At a distance of [tex]r[/tex] away from the charge, the electric field due to this point charge will be:
[tex]\displaystyle E = \frac{k\, q}{r^2}[/tex].
At the point (or points) where the electric field is zero, the size of the net electrostatic force on any test charge should also be zero.
Consider a positive test charge placed on the line joining the two point charges in this question. Both of the two point charges here are positive. They will both repel the positive test charge regardless of the position of this test charge.
When the test charge is on the same side of both point charges, both point charges will push the test charge in the same direction. As a result, the two electric forces (due to the two point charges) will not balance each other, and the net electric force on the test charge will be non-zero.
On the other hand, when the test charge is between the two point charges, the electric forces due to the two point charges will counteract each other. This force should be zero at some point in that region.
Keep in mind that the electric field at a point is zero only if the electric force on any test charge at that position is zero. Therefore, among the three sections, the line segment between the two point charges is the only place where the electric field could be zero.
Let [tex]q_1 = 5\times 10^{-19}\; \rm C[/tex] and [tex]q_2 = 20 \times 10^{-19}\; \rm C[/tex]. Assume that the electric field is zero at [tex]r[/tex] meters to the right of the [tex]5\times 10^{-19}\; \rm C[/tex] point charge. That would be [tex](2 - r)[/tex] meters to the left of the [tex]20 \times 10^{-19}\; \rm C[/tex] point charge. (Since this point should be between the two point charges, [tex]0 < r < 2[/tex].)
The electric field due to [tex]q_1 = 5\times 10^{-19}\; \rm C[/tex] would have a magnitude of:
[tex]\displaystyle | E_1 | = \frac{k\cdot q_1}{r^2}[/tex].
The electric field due to [tex]q_2 = 20 \times 10^{-19}\; \rm C[/tex] would have a magnitude of:
[tex]\displaystyle | E_2 | = \frac{k\cdot q_2}{(2 - r)^2}[/tex].
Note that at all point in this section, the two electric fields [tex]E_1[/tex] and [tex]E_2[/tex] will be acting in opposite directions. At the point where the two electric fields balance each other precisely, [tex]| E_1 | = | E_2 |[/tex]. That's where the actual electric field is zero.
[tex]| E_1 | = | E_2 |[/tex] means that [tex]\displaystyle \frac{k\cdot q_1}{r^2} = \frac{k\cdot q_2}{(2 - r)^2}[/tex].
Simplify this expression and solve for [tex]r[/tex]:
[tex]\displaystyle q_1\, (2 - r)^2 - q_2 \, r^2 = 0[/tex].
[tex]\displaystyle 5\times (2 - r)^2 - 20\, r^2 = 0[/tex].
Either [tex]r = -2[/tex] or [tex]\displaystyle r = \frac{2}{3}\approx 0.67[/tex] will satisfy this equation. However, since this point (the point where the actual electric field is zero) should be between the two point charges, [tex]0 < r < 2[/tex]. Therefore, [tex](-2)[/tex] isn't a valid value for [tex]r[/tex] in this context.
As a result, the electric field is zero at the point approximately [tex]0.67\; \rm m[/tex] away the [tex]5\times 10^{-19}\; \rm C[/tex] charge, and approximately [tex]2 - 0.67 \approx 1.3\; \rm m[/tex] away from the [tex]20 \times 10^{-19}\; \rm C[/tex] charge.