Respuesta :

Explanation:

1.  Impulse = change in momentum

J = Δp

J = mΔv

In the x direction:

Jₓ = mΔvₓ

Jₓ = (0.40 kg) (30 m/s cos 45° − (-20 m/s))

Jₓ = 16.5 kg m/s

In the y direction:

Jᵧ = mΔvᵧ

Jᵧ = (0.40 kg) (30 m/s sin 45° − 0 m/s)

Jᵧ = 8.49 kg m/s

The magnitude of the impulse is:

J = √(Jₓ² + Jᵧ²)

J = 18.5 kg m/s

The average force is:

FΔt = J

F = J/Δt

F = 1850 N

2. Momentum is conserved.

m₁u₁ + m₂u₂ = (m₁ + m₂) v

In the x direction:

(1000 kg) (0 m/s) + (1500 kg) (-12 m/s) = (1000 kg + 1500 kg) vₓ

vₓ = -7.2 m/s

In the y direction:

(1000 kg) (20 m/s) + (1500 kg) (0 m/s) = (1000 kg + 1500 kg) vᵧ

vᵧ = 8 m/s

The magnitude of the final speed is:

v = √(vₓ² + vᵧ²)

v = 10.8 m/s

3. Momentum is conserved.

m₁u₁ + m₂u₂ = (m₁ + m₂) v

In the x direction:

(0.8 kg) (18 m/s cos 45°) + (0.36 kg) (9.0 m/s) = (0.8 kg + 0.36 kg) vₓ

vₓ = 11.6 m/s

In the y direction:

(0.8 kg) (-18 m/s sin 45°) + (0.36 kg) (0 m/s) = (0.8 kg + 0.36 kg) vᵧ

vᵧ = -8.78 m/s

The magnitude of the final speed is:

v = √(vₓ² + vᵧ²)

v = 14.5 m/s