Evaluate the integral using integration by parts with the indicated choices of u and dv. (Use C for the constant of integration.) ∫4x2 lnx dx ; u= lnx , dv=4x 2dx

Respuesta :

Take

[tex]u=\ln x\implies\mathrm du=\dfrac{\mathrm dx}x[/tex]

[tex]\mathrm dv=4x^2\,\mathrm dx\implies v=\dfrac43x^3[/tex]

Then

[tex]\displaystyle\int4x^2\ln x\,\mathrm dx=\frac43x^3\ln x-\frac43\int x^2\,\mathrm dx=\frac43x^3\ln x-\frac49x^3+C[/tex]

[tex]=\boxed{\dfrac49x^3(3\ln x-1)+C}[/tex]