Answer:
moment of inertia = 4.662 * 10^6 [tex]mm^4[/tex]
Explanation:
Given data :
Mass of machine = 400 kg = 400 * 9.81 = 3924 N
length of span = 3.2 m
E = 200 * 10^9 N/m^2
frequency = 9.3 Hz
Wm ( angular frequency ) = 2 [tex]\pi f[/tex] = 58.434 rad/secs
also Wm = [tex]\sqrt{\frac{g}{t} }[/tex] ------- EQUATION 1
g = 9.81
deflection of simply supported beam
t = [tex]\frac{wl^3}{48EI}[/tex]
insert the value of t into equation 1
W[tex]m^2[/tex] = [tex]\frac{g*48*E*I}{WL^3}[/tex] make I the subject of the equation
I ( Moment of inertia about the neutral axis ) = [tex]\frac{WL^3* Wn^2}{48*g*E}[/tex]
I = [tex]\frac{3924*3.2^3*58.434^2}{48*9.81*200*10^9}[/tex] = 4.662 * 10^6 [tex]mm^4[/tex]