Respuesta :
Answer:
8.68
Explanation:
pOH = 8.68
all you need is contained in the sheet
Answer:
Approximately [tex]8.68[/tex].
Explanation:
The [tex]\rm pOH[/tex] of a solution can be found from the hydroxide ion concentration [tex]\rm \left[OH^{-}\right][/tex] with the following equation:
[tex]\displaystyle \rm pOH = -\log_{10} \rm \left[OH^{-}\right][/tex].
On the other hand, the ion-product constant of water, [tex]K_{\text{w}}[/tex], relates the hydroxide ion concentration [tex]\rm \left[OH^{-}\right][/tex] of a solution to its hydronium ion concentration [tex]\rm \left[{H_3O}^{+}\right][/tex]:
[tex]K_\text{w} = \rm \left[{H_3O}^{+}\right] \cdot \rm \left[OH^{-}\right][/tex].
- At [tex]25 \; ^\circ \rm C[/tex], [tex]K_{\text{w}} \approx 1.0 \times 10^{-14}[/tex].
- For this particular [tex]25 \; ^\circ \rm C[/tex] solution, [tex]\rm \left[{H_3O}^{+}\right] = 4.8 \times 10^{-6}\; \rm mol \cdot L^{-1}[/tex].
Hence the [tex]\rm \left[OH^{-}\right][/tex] of this solution:
[tex]\begin{aligned}\left[\mathrm{OH}^{-}\right] &= \frac{K_\text{w}}{\rm \left[{H_3O}^{+}\right]} \\ &= \frac{1.0 \times 10^{-14}}{4.8 \times 10^{-6}}\; \rm mol\cdot L^{-1} \approx 2.08333 \times 10^{-9}\; \rm mol\cdot L^{-1}\end{aligned}[/tex].
Therefore, the [tex]\rm pOH[/tex] of this solution would be:
[tex]\begin{aligned}\rm pOH &= -\log_{10} \rm \left[OH^{-}\right] \\ &\approx -\log_{10} \left(4.8 \times 10^{-6}\right) \approx 8.68\end{aligned}[/tex].
Note that by convention, the number of decimal places in [tex]\rm pOH[/tex] should be the same as the number of significant figures in [tex]\rm \left[OH^{-}\right][/tex].
For example, because the [tex]\rm \left[{H_3O}^{+}\right][/tex] from the question has two significant figures, the [tex]\rm \left[OH^{-}\right][/tex] here also has two significant figures. As a result, the [tex]\rm pOH[/tex] in the result should have two decimal places.