Answer:
The answer to this question can be defined as follows:
In option A: The answer is "13020".
In option B: The answer is "468 Segments".
Explanation:
Given:
The value of round-trip delay= 60 m-second
The value of Bandwidth= 1Gbps
The value of Segment size = 576 octets
window size =?
Formula:
[tex]\text{Window size =} \frac{(\text{Bandwidth} \times \text{round} - \text{trip time})}{(\text{segment size window })}[/tex]
[tex]=\frac{10^9 \times 0.06}{576 \times 8}\\\\=\frac{10^9 \times6}{576 \times 8\times 100}\\\\=\frac{10^7 \times 1}{96 \times 8}\\\\=\frac{10^7 \times 1}{768}\\\\=13020.83[/tex]
So, the value of the segments is =13020.833 or equal to 13020
Calculating segments in the size of 16 k-bytes:
[tex]\text{Window size} = \frac{10^9 \times 0.06}{16,000 \times 8}[/tex]
[tex]= \frac{10^9 \times 0.06}{16,000 \times 8}\\\\ = \frac{10^9 \times 6}{16,000 \times 8 \times 100}\\\\ = \frac{10^4 \times 3}{16 \times 4}\\\\ = \frac{30000}{64 }\\\\=468.75[/tex]
The size of 16 k-bytes segments is 468.75 which is equal to 468.