Respuesta :

Answer:

The value representing one standard deviation  to the right of the mean is 55.

Step-by-step explanation:

The provided data set is:

S = {56, 54, 45, 52, and 48}

Compute the mean and standard deviation as follows:

[tex]\mu=\frac{1}{n}\sum X=\frac{1}{5}\times [56+54+45+52+48]=51\\\\\sigma=\sqrt{\frac{1}{n}\sum (X-\mu)^{2}}=\sqrt{\frac{1}{5}\cdot {(56-51)^{2}+...+(48-51)^{2}}}=\sqrt{\frac{1}{5}\times 80}=4[/tex]

Compute the value representing one standard deviation  to the right of the mean as follows:

[tex]X=\mu+1\cdot \sigma[/tex]

    [tex]=51+(1\times 4)\\=51+4\\=55[/tex]

Thus, the value representing one standard deviation  to the right of the mean is 55.