Respuesta :

Answer:

-16128

Step-by-step explanation:

This expression can be calculated by algebraic means, whose process is described below:

1) [tex](-28)^{3}+(12)^{3}+(16)^{3}[/tex] Given.

2) [tex](-12-16)^{3} + (12)^{3}+(16)^{3}[/tex] Definition of addition.

3) [tex](-12)^{3} + 3\cdot (-12)^{2}\cdot (-16)+3\cdot (-12)\cdot (-16)^{2}+(-16)^{3}+(12)^{3}+(16)^{3}[/tex] Cubic perfect binomial.

4) [tex](12)^{3}+[(-1)\cdot (12)]^{3}+(16)^{3} + [(-1)\cdot (16)]^{3}+3 \cdot (-12)^{2}\cdot (-16) + 3\cdot (-12)\cdot (-16)^{2}[/tex] Commutative property/[tex](-x)\cdot y = -x\cdot y[/tex]

5) [tex](12)^{3} + (-1)^{3}\cdot (12)^{3} + 16^{3} +(-1)^{3}\cdot (16)^{3} + (-3)\cdot [(-12)^{2}\cdot (16) +(-16)^{2}\cdot (12)][/tex] Distributive property/[tex](-x)\cdot y = -x\cdot y[/tex]/[tex]x^{n}\cdot y^{n} = (x\cdot y)^{n}[/tex]

6) [tex](12)^{3} + [-(12)^{3}]+(16)^{3} + [-(16)^{3}]+ (-3)\cdot [(-12)^{2}\cdot (16)+(-16)^{2}\cdot (12)][/tex] [tex](-x)\cdot y = -x\cdot y[/tex]

7) [tex](-3)\cdot [(-12)^{2}\cdot (16) + (-16)^{2}\cdot (12)][/tex] Existence of the additive inverse/Modulative property for addition.

8) [tex](-3) \cdot [(12)^{2}\cdot (16)+(16^{2})\cdot (12)][/tex] [tex]x^{n}\cdot y^{n} = (x\cdot y)^{n}[/tex]/[tex](-x)\cdot (-y) = x\cdot y[/tex]

9) [tex](-3)\cdot (12)\cdot (16)\cdot (12+16)[/tex] Distributive property.

10) [tex]-16128[/tex]     [tex](-x)\cdot y = -x\cdot y[/tex]/Definition of sum/Definition of multiplication/Result