Enter your answer in the provided box.


The equilibrium constant KP for the reaction


CO(g) + Cl2(g) ⇌ COCl2(g)


is 5.62 × 1035 at 25°C. Calculate ΔG

o

f

for COCl2 at 25°C.

Respuesta :

Answer:

The correct answer is -341.2 kJ per mole.

Explanation:

The reaction given is:  

CO (g) + Cl₂ (g) ⇔ COCl₂ (g)

Kp = 5.62 × 10³⁵

T = 25 °C or 298 K

The formula for calculating ΔG is,  

ΔG° = -RTlnKp

ΔG° = -8.314 × 298 ln (5.62 × 10^35)

ΔG° = -203.9 kJ/mol

ΔG° = ∑nΔG°f (products) -∑nΔG°f (reactants)

ΔG° = ΔG°f (COCl₂ (g)) - [ΔG°f (CO(g)) + ΔG°f (Cl₂(g))]

ΔG°f (COCl₂ (g)) = ΔG° + [ΔG°f (CO (g)) + ΔG°f (Cl₂(g))]

ΔG°f (COCl₂ (g)) = -203.9 + (-137.28 + 0.00)

ΔG°f (COCl₂ (g)) = -341.2 kJ/mol

The standard Gibbs free energy [tex]\mathbf{\Delta G^o_f}[/tex] for COCl2 at 25°C is -341.25 kJ/mol

The given equation for the chemical reaction is

CO(g) + Cl2(g) ⇌ COCl2(g)

At the temperature of 25°C = (273 + 25) K, the equilibrium constant [tex]\mathbf{K_p = 5.62\times 10^{35}}[/tex]

Consider the expression for the relationship between [tex]\mathbf{\Delta G^o}[/tex] and [tex]\mathbf{K_p }[/tex] for the equilibrium reaction can be expressed as:

[tex]\mathbf{\Delta G^o = - RT In K_p}[/tex]

where;

  • gas constant (R) = 8.314 × 10⁻³ kJ/K.mol

[tex]\mathbf{\Delta G^o = - (8.314 \times 10^{-3}\ kJ/K.mol \times 298 \ K) \times In (5.62 \times 10^{35} )}[/tex]

[tex]\mathbf{\Delta G^o = -2.477572\ K \times 82.31680992}[/tex]

[tex]\mathbf{\Delta G^o = 203.95 \ kJ}[/tex]

Thus, the standard free energy for the reaction is 203.95 kJ/mol

For a given reaction, the standard Gibbs free energy can be calculated by using the formula:

[tex]\mathbf{\Delta G^o_{rxn} = \sum n \Delta G^o_f (products) - \sum m \Delta G^o_f (reactants) }[/tex]

[tex]\mathbf{\Delta G^o_{rxn} =\Big [\Delta G^o_{f} (COCl_{2(g)} ) -\Big(\Delta G^o_{f} (CO)_{(g)} + \Delta G^o_{f} (Cl)_{2(g)} ) \Big ) \Big ] }[/tex]

replacing the values of and solving for COCl2 at standard free energy of formation of substances, we have:

[tex]\mathbf{-203.95 \ kJ/mol =\Big [\Delta G^o_{f} (COCl_{2(g)} ) -\Big(-137.3 kJ/mol + 0 \ kJ/mol\Big ) \Big ] }[/tex]

Collecting like terms, we have:

[tex]\mathbf{\Delta G^o_{f} (COCl_{2(g)} ) = -203.95 \ kJ/mol -137.3 kJ/mol }[/tex]

[tex]\mathbf{\Delta G^o_{f} (COCl_{2(g)} ) = -341.25 \ kJ/mol }[/tex]

Therefore, we can conclude that the standard Gibbs free energy [tex]\mathbf{\Delta G^o_f}[/tex] for COCl2 at 25°C is -341.25 kJ/mol

Learn more about standard Gibbs free energy here:

https://brainly.com/question/13318988?referrer=searchResults