Answer:
2
Step-by-step explanation:
In the above question, we are given the following information:
Total member in the club = 15
Rugby = n(R) = 7
Soccer = n(S) = 6
Neither Rugby nor Soccer = 4
Rugby and soccer = n( R ∩ S) = (Unknown)
Total number of club members = n(R) + n(S) - n( R ∩ S) + Neither Rugby nor soccer
15 = 7 + 6 - n( R ∩ S) + 4
15 = 17 - n( R ∩ S)
15 - 17 = - n( R ∩ S)
-2 = - n( R ∩ S)
n( R ∩ S) = 2
Therefore, the number of people that played both rugby and soccer is 2