Respuesta :
Answer:
a)2/7
b)1/2
c)9/14
d)6/7
Step-by-step explanation:
The jar contains 4 red marbles, numbered 1 to 4 which means
Red marbles = (R1) , (R2) , (R3) , (R4)
It also contains 10 blue marbles numbered 1 to 10 which means
Blue marbles = (B1) , (B2) , (B3) , (B4) , (B5) , (B6) , (B7) , (B8) , (B9) , (B10) .
We can calculate total marbles = 4red +10 blues
=14marbled
Therefore, total marbles= 14
The marbles that has even number = (R2) , (R4) ,(B2) , (B4) , (B6) , (B8) , (B10) =7
Total number of Blue marbles = 10
Blue and even marbles = 5
(a) The marble is red
P(The marble is red)=total number of red marbles/Total number of marbles
=4/14
=2/7
(b) The marble is odd-numbered
Blue marbles with odd number= (B1) , (B3) , (B5) , (B7) , (B9) ,
Red marbles with odd number = (R1) , (R3)
Number of odd numbered =(5+2)=7
P(marble is odd-numbered )= Number of odd numbered/ Total number of marbles
P(marble is odd-numbered )=7/14
=1/2
(C) The marble is red or odd-numbered?
Total number of red marbles = 14
Number of red and odd marbles = 2
The marbles that has odd number = (R1) , (R3) ,(B1) , (B3) , (B5) , (B7) , (B9) =7
n(red or even )= n(red) + n(odd)- n(red and odd)
=4+7-2
=9
P(red or odd numbered)= (number of red or odd)/(total number of the marble)
= 9/14
(d) The marble is blue or even-numbered?
Number of Blue and even marbles = 5
Total number of Blue marbles = 10
Number of blue that are even= 5
The marbles that has even number = (R2) , (R4) ,(B2) , (B4) , (B6) , (B8) , (B10)
=7
n(Blue or even )= n(Blue) + n(even)- n(Blue and even)
= 10+7-5 =12
Now , the probability the marble is blue or even numbered can be calculated as
P(blue or even numbered)= (number of Blue or even)/(total number of the marble)
= 12/14
= 6/7