Answer:
[tex]\huge\boxed{\sf a = -12 , b = 8}[/tex]
Step-by-step explanation:
Given polynomial is:
[tex]f(x) = ax^3+ b^2 + 3x + 4[/tex]
[tex]\rule[225]{225}{2}[/tex]
First factor is (x-1)
Let x - 1 = 0 => x = 1
Putting this in the above polynomial
[tex]f(1) = a(1)^3 + b(1)^2 + 3(1) + 4[/tex]
Given that it's remainder is 3
[tex]3 = a + b + 3 + 4[/tex]
[tex]3 = a + b + 7[/tex]
Subtracting 7 to both sides
[tex]-4 = a + b\\OR \\[/tex]
[tex]\rule[225]{225}{2}[/tex]
Second Factor is 2x + 1
Let 2x + 1 = 0 => x = - 1 / 2
Putting in the above polynomial
[tex]f(-\frac{1}{2} ) = a (-\frac{1}{2} )^3 + b (-\frac{1}{2} )^2 + 3 (-\frac{1}{2} ) + 4[/tex]
The remainder is 6
[tex]6 = -\frac{a}{8} + \frac{b}{4} - \frac{3}{2} + 4\\6 - 4 = -\frac{a}{8} + \frac{b}{4} - \frac{3}{2}\\2 = \frac{-a + 2b -12 }{8} \\-a + 2b - 12 = 16\\-a + 2b = 16 + 12\\[/tex]
[tex]\rule[225]{225}{2}[/tex]
Adding both equations
a + b - a + 2b = -4 + 28
3b = 24
Dividing both sides by 3
b = 8
[tex]\rule[225]{225}{2}[/tex]
Putting b = 8 in Equation (1)
a + 8 = -4
a = - 4 - 8
a = -12
[tex]\rule[225]{225}{2}[/tex]